Synthesis and 1,3-Dipolar Cycloaddition Reactions of N-Aryl- $C, C-$ dimethoxycarbonylnitrones

Yukihiko Tomioka*, Chie Nagahiro, Yumiko Nomura and Hiroshi Maruoka
Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

Received July 26, 2002
Arylnitroso compounds 1-3 easily reacted with dimethyl bromomalonate to give the corresponding N -aryl-C,C-dimethoxycarbonylnitrones (4-6). Treatment of C, C-dimethoxycarbonyl- N-(1-naphthyl)nitrone (4) with acetylene compounds (dimethyl acetylenedicarboxylate, methyl 2-butynoate or ethyl phenylpropiolate) caused 1,3-dipolar cycloaddition to furnish the corresponding $1 H$-benz $[g]$ indolines (7a-c). In a similar manner, the reactions of nitrones $\mathbf{5}$ and $\mathbf{6}$ with acetylene compounds afforded the corresponding indolines $9 \mathrm{a}-\mathbf{c}$ and 11a-c together with 4-oxazolines 13a-c and 14a-c.
J. Heterocyclic Chem., 40, 121 (2003).

In recent years much attention has been focused on synthesis and reactions of nitrones because of their importance as synthetic tools in organic chemistry [1-4]. In fact, many reports have appeared, especially concerning 1,3-dipolar cycloaddition reactions. 1,3-Dipolar cycloaddition of nitrones occupies a uniquely important position due to their synthetic significance [5-10]. In general, nitrones react energetically with alkynes to form 2,3-dihydroisoxazoles as intermediates and products [11,12]. However, the situation is complicated by the instability of the isoxazoles produced and by the variety of different decomposition pathways. The 2,3-dihydroisoxazole system, which was associated with the presence of the weak nitrogen-oxygen bond and the carbon-carbon π system, goes through many types of rearrangements. In this respect, our interest in the chemistry of nitrone-alkyne cycloaddition stems from the exploitation of indolines and indoles showing biological interest [1321]. This work presents an efficient method for the synthesis of N -aryl-C,C-dimethoxycarbonylnitrones from arylni-
troso compounds. We also describe a new route to indolines from nitrones with acetylene compounds by their using 1,3dipolar cycloaddition.

The starting compounds N-aryl- C, C-dimethoxycarbonylnitrones (4-6) were prepared by the reaction of the corresponding arylnitroso compounds $\mathbf{1 - 3}$ [22] with dimethyl bromomalonate and sodium hydroxide in moderate yields (4: $49 \%, 5: 81 \%, 6: 82 \%)$. When a mixture of 4 and acetylene compounds (dimethyl acetylenedicarboxylate, methyl 2-butynoate or ethyl phenylpropiolate) in benzene was refluxed, 1 H -benz $[g]$ indolines $7 \mathbf{7 a - c}$ were obtained in good yields (7a: $89 \%, 7 b: 81 \%, 7 c: 92 \%$). Fortunately, it was further found that dimethyl 3-methoxalyl(and 3-ethoxalyl)$1 H$-benz $[g]$ indoline-2,2-dicarboxylates ($\mathbf{8 b}$ and $\mathbf{8 c}$) were also obtained in 3 and 2% yield, respectively. The ir spectra of $\mathbf{7 a - c}$ and $\mathbf{8 b}, \mathbf{c}$ display bands near $3350 \mathrm{~cm}^{-1}$ due to an amino group and in the range of $1660 \sim 1760 \mathrm{~cm}^{-1}$ due to carbonyl groups. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of $7 \mathbf{7 a}$ exhibits four three-proton singlets near $\delta 3.80$ attributable to methoxy-

Scheme 1

carbonyl groups and a broad one-proton singlet at $\delta 5.63$ assignable to a secondary amino group. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of 7b shows three singlets near $\delta 3.80$ for methoxycarbonyl groups and a singlet at $\delta 2.31$ for an acetyl group, whereas $\mathbf{8 b}$ appears as three singlets near $\delta 3.80$ for methoxycarbonyl groups and a singlet at $\delta 1.76$ for a methyl group. Elemental analyses and spectral data of 7a-c and $\mathbf{8 b}, \mathbf{c}$ are consistent with the proposed structures. These findings suggest the possibility that this reaction occurs via 1,3-dipolar cycloaddition of $\mathbf{4}$ and acetylene compounds to form the intermediate 2,3-dihydroisoxazole \mathbf{A} (path a) rather than \mathbf{B} (path b), which undergoes ring transformation to give 7a-c (Scheme 1). These observations indicate that the structure of the intermediate is susceptible to electronic influence of the methoxy(or ethoxy)carbonyl group of dipolarophiles as electron-withdrawing.
Subsequently, the reactions of $\mathbf{5}$ and $\mathbf{6}$ with acetylene compounds under the same conditions gave the corresponding indolines 9a-c (9a: 43\%, 9b: 48\%, 9c: 58\%) and 11a-c (11a: 69%, 11b: 56%, 11c: 59%) together with 10b,c (10b: $3 \%, \mathbf{1 0 c}: 2 \%$) and 12b,c (12b: 6\%, 12c: 3%) as byproducts. In the case of this reaction, 4-oxazolines 13a-c (13a: 25%, 13b: $15 \%, 13 \mathrm{c}: 16 \%$) and 14a-c (14a: 17%, 14b: $15 \%, \mathbf{1 4 c}$: 29%) were also obtained as rearrangement products (Scheme 2). Furthermore, we found the reaction condition under which the key intermediate 2,3-dihydroisoxazoles 15b,c could be isolated. Treatment of $\mathbf{6}$ with methyl 2-butynoate or ethyl phenylpropiolate at room temperature gave the corresponding $\mathbf{1 5 b}, \mathbf{c}$ in 65 and 59% yield, respectively. However, in the case of the reaction of 4 and/or 5 with acetylene compounds, the intermediate \mathbf{C}
such as the 2,3-dihydroisoxazoles $\mathbf{1 5 b}, \mathbf{c}$ could not be isolated at room temperature or another conditions. These results make us believe that the key intermediate 2,3-dihydroisoxazoles $\mathbf{1 5 b}, \mathbf{c}$ are more stable than those of the reactions of $\mathbf{4}$ and/or 5 with acetylene compounds. Compounds 15b,c were easily converted to 11b,c (11b: 76%, 11c: 63\%) and $\mathbf{1 4 b}, \mathbf{c}(\mathbf{1 4 b}: 22 \%, 14 \mathbf{c}: 35 \%)$ in refluxing benzene. The formation of $\mathbf{9}, \mathbf{1 1}, \mathbf{1 3}$ and $\mathbf{1 4}$ can be explained in terms of Scheme 2. A 1,3-dipolar cycloaddition of nitrones 5 and 6 to acetylene compounds gives the intermediate 2,3-dihydroisoxazole \mathbf{C}, which undergoes ring transformation to afford the indolines 9 and 11. On the other hand, a ring contraction of the intermediate \mathbf{C} to the aziridine \mathbf{D} easily occurs, which could then undergo ring expansion to give 4 -oxazolines 13 and 14. The structures of $9 \mathrm{a}-\mathbf{c}, \mathbf{1 0 b}, \mathbf{c}, 11 \mathrm{a}-$ c, 12b,c, 13a-c, 14a-c and 15b,c were confirmed by elemental analyses and spectral data.

Finally, we have examined the aromatization of 7a and 11a with triethylamine, hydrogen chloride and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in order to confirm their structures (Scheme 3). The reactions of 7a and 11a with triethylamine gave the corresponding trimethyl indoline-2,2,3-tricarboxylates 16a,b (16a: 90\%, 16b: 99%). Treatment of $\mathbf{1 6 a}, \mathbf{b}$ with hydrogen chloride caused demethoxycarbonylation to afford dimethyl cisand trans-indoline-2,3-dicarboxylates 17a,b (cis-17a: 11\%, trans-17a: 50%, cis-17b: 13%, trans-17b: 29%). These diastereomers of $\mathbf{1 7 a}, \mathbf{b}$ could be separated by silica gel chromatography (see experimental section). Compounds cis- and trans-17a,b reacted with DDQ to yield the corresponding dimethyl indole-2,3-dicarboxy-

Scheme 2

10b, c

12b,c

	R^{1}	R^{2}
\mathbf{a}	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$
\mathbf{b}	Me	$\mathrm{CO}_{2} \mathrm{Me}$
\mathbf{c}	Ph	$\mathrm{CO}_{2} \mathrm{Et}$

$15 \mathrm{~b}, \mathrm{c}$
lates 18a,b (18a: 85\% from cis-17a, 81% from trans-17a; 18b: 77% from cis-17b, 85% from trans- $\mathbf{1 7 b}$), which were identical with authentic samples prepared according to the method of Mitchell et al. [23] or prepared according to the method of Diels et al. [24].
nmr (deuteriochloroform): $\delta 3.64$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.97 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 7.37-7.56(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.79-7.91 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}$, aromatic H); ms: m/z $287\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, 62.72; H, 4.56; N, 4.88. Found: C, 62.78; H, 4.50; N, 4.88.

EXPERIMENTAL

All melting points are uncorrected. The ir spectra were recorded on a JASCO A-302 spectrometer or a JASCO FT/IR-230 spectrometer. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra were recorded on a HITACHI R-90 H spectrometer (90 MHz) or a JEOL JNM-MH-100 $(100 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane as internal standard. Mass (70 eV , electron impact ionization) spectra were obtained on a JEOL JMS-D 300 spectrometer. Elemental analyses were performed on a HERAUS CHNO-RAPID analyzer or a YANACO MT-6 CHN analyzer. Nitrosobenzene was obtained from Aldrich Chemical Company, Inc. 1- and 2-Nitrosonaphthalene were prepared according to the method of Earl Brill [22].
General Procedure for the Preparation of N-Aryl-C, C-dimethoxycarbonylnitrones 4-6.
To an ice-cooled and stirred solution of arylnitroso compounds 1-3 (30 mmoles) in tetrahydrofuran (30 ml) were added dimethyl bromomalonate ($6.96 \mathrm{~g}, 33 \mathrm{mmoles}$) and a solution of sodium hydroxide ($1.32 \mathrm{~g}, 33 \mathrm{mmoles}$) in water (3 ml). After the mixture was stirred for 3 hours with ice-cooling, cold water was added to the reaction mixture. The precipitate was collected by filtration, washed with water, dried and recrystallized from diethyl ether to yield 4-6.
C, C-Dimethoxycarbonyl- N-(1-naphthyl)nitrone (4).
This compound was obtained as yellow prisms ($4.19 \mathrm{~g}, 49 \%$), mp 187-188 ${ }^{\circ}$; ir (potassium bromide): v $1730(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (DMSO-d ${ }_{6}$): $\delta 3.54$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 7.58-7.73 ($\mathrm{m}, 5 \mathrm{H}$, aromatic H), 8.02-8.18 $\mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic $\mathrm{H})$; ms: m/z $287\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, 62.72; $\mathrm{H}, 4.56 ; \mathrm{N}, 4.88$. Found: C, 63.01; H, 4.58; N, 5.06.

C, C-Dimethoxycarbonyl- N-(2-naphthyl)nitrone (5).

This compound was obtained as yellow prisms ($6.97 \mathrm{~g}, 81 \%$), $\mathrm{mp} 101-103^{\circ}$; ir (potassium bromide): v $1735(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$

C, C-Dimethoxycarbonyl- N-phenylnitrone (6).

This compound was obtained as yellow prisms ($5.83 \mathrm{~g}, 82 \%$), $\mathrm{mp} 74-75^{\circ}$; ir (potassium bromide): v $1738(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.67$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.96 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 7.30-7.52 \mathrm{ppm}(\mathrm{m}, 5 \mathrm{H}$, aromatic H$)$; ms: m/z $237\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5}$: C, $55.70 ; \mathrm{H}, 4.67$; N, 5.91. Found: C, 55.56; H, 4.68; N, 5.64.

General Procedure for the Preparation of 7a-c, 8b,c, 9a-c, 10b,c, 11a-c, 12b,c, 13a-c and 14a-c from 4-6 and Acetylene Compounds.

A mixture of 4-6 (5 mmoles) and dimethyl acetylenedicarboxylate ($0.71 \mathrm{~g}, 5$ mmoles), methyl 2-butynoate ($0.49 \mathrm{~g}, 5$ mmoles) or ethyl phenylpropiolate ($0.87 \mathrm{~g}, 5$ mmoles) in benzene (5 ml) was refluxed for 2 hours (in the case of dimethyl acetylenedicarboxylate) or 8 hours (methyl 2-butynoate and ethyl phenylpropiolate). After removal of the solvent in vacuo, the residue was recrystallized from an appropriate solvent (a fractional recrystallization) to give 7a-c, 9a-c, 11a-c, 13a-c and 14a-c. The mother solvent was purified by silica gel chromatography using an ethyl acetatehexane (1:4) as the eluent to give $\mathbf{8 b}, \mathbf{c}, \mathbf{1 0 b}, \mathbf{c}$ and $\mathbf{1 2 b}, \mathbf{c}$.
Trimethyl 3-Methoxalyl-1 H -benz[g]indoline-2,2,3-tricarboxylate (7a).

This compound was obtained as orange prisms ($1.91 \mathrm{~g}, 89 \%$), $\mathrm{mp} 149-150^{\circ}$ (acetone-diethyl ether); ir (potassium bromide): v $3380(\mathrm{NH}), 1760,1725(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.75$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.82 (s, $6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}$), 3.83 (s, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $5.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.35-7.47(\mathrm{~m}, 4 \mathrm{H}$, aromatic $\mathrm{H}), 7.70-7.83 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; ms: m/z $429\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{9}$: C, 58.74; H, 4.46; N, 3.26. Found: C, 58.72; H, 4.44; N, 2.96.
Trimethyl 3-Acetyl-1 H -benz[g]indoline-2,2,3-tricarboxylate (7b).
This compound was obtained as colorless prisms (1.56 g , 81%), mp 174-177 (acetone-diethyl ether); ir (potassium bromide): v $3385(\mathrm{NH}), 1745,1715(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.31$ (s, $3 \mathrm{H}, \mathrm{COMe}$), 3.76 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.80
(s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.81 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.33-$ $7.56(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.72-7.85 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; ms : m/z $385\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}, 62.33 ; \mathrm{H}, 4.97 ; \mathrm{N}, 3.64$. Found: C, 62.17; H, 4.92; N, 3.49.

Dimethyl 3-Benzoyl-3-ethoxycarbonyl-1H-benz[g]indoline-2,2dicarboxylate (7c).

This compound was obtained as yellow prisms ($2.12 \mathrm{~g}, 92 \%$), $\mathrm{mp} 182-183^{\circ}$ (acetone); ir (potassium bromide): v $3320(\mathrm{NH})$, 1757, 1742, $1660(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $1.22\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $4.24\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 5.61 (br s, $1 \mathrm{H}, \mathrm{NH}), 7.22-7.87 \mathrm{ppm}(\mathrm{m}, 11 \mathrm{H}$, aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 461$ $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 67.67 ; \mathrm{H}, 5.02 ; \mathrm{N}, 3.04$. Found: C, 67.47; H, 5.19; N, 2.80.

Dimethyl 3-Methoxalyl-3-methyl-1H-benz[g]indoline-2,2-dicarboxylate ($\mathbf{8 b}$).

This compound was obtained as orange prisms ($58 \mathrm{mg}, 3 \%$), $\mathrm{mp} 129-130^{\circ}$ (acetone); ir (potassium bromide): v $3390(\mathrm{NH})$, 1753, 1730, $1712(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 1.76 ($\mathrm{s}, 3 \mathrm{H}, 3-\mathrm{Me}$), $3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.40-7.88 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}$, aromatic H); ms: m/z $385\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}, 62.33 ; \mathrm{H}, 4.97 ; \mathrm{N}, 3.64$. Found: C, 62.23; H, 4.97; N, 3.66.

Dimethyl 3-Ethoxalyl-3-phenyl-1H-benz[g]indoline-2,2-dicarboxylate (8c).

This compound was obtained as orange prisms ($46 \mathrm{mg}, 2 \%$), $\mathrm{mp} 181-182^{\circ}$ (acetone-diethyl ether); ir (potassium bromide): v $3360(\mathrm{NH}), 1738(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $1.03\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.93$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $4.03\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.46$ (br s, $1 \mathrm{H}, \mathrm{NH}), 7.30-7.93 \mathrm{ppm}(\mathrm{m}, 11 \mathrm{H}$, aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 461$ $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 67.67 ; \mathrm{H}, 5.02 ; \mathrm{N}, 3.04$. Found: C, 67.62; H, 5.05; N, 3.12.

Trimethyl 1-Methoxalyl-3H-benz[e]indoline-1,2,2-tricarboxylate (9a).

This compound was obtained as red prisms ($0.92 \mathrm{~g}, 43 \%$), mp 162-164 ${ }^{\circ}$ (acetone-petroleum ether); ir (potassium bromide): v $3370(\mathrm{NH}), 1755,1741,1726(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}\right), 3.81(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.02-7.39(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$, 7.68-7.77 ppm (m, 2 H , aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 429\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{9}$: C, $58.74 ; \mathrm{H}, 4.46 ; \mathrm{N}, 3.26$. Found: C, 58.71; H, 4.46; N, 3.07.

Trimethyl 1-Acetyl-3H-benz[e]indoline-1,2,2-tricarboxylate (9b).

This compound was obtained as colorless prisms $(0.92 \mathrm{~g}$, 48%), mp 148-151 ${ }^{\circ}$ (acetone-petroleum ether); ir (potassium bromide): v $3340(\mathrm{NH}), 1758,1745,1730,1703(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (deuteriochloroform): $\delta 2.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}), 3.69(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.20(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 7.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.17-7.41(\mathrm{~m}, 3 \mathrm{H}$,
aromatic H$), 7.74(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.69-7.79 \mathrm{ppm}(\mathrm{m}$, 1 H , aromatic H); ms: m/z $385\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}$: C, 62.33; $\mathrm{H}, 4.97 ; \mathrm{N}, 3.64$. Found: C, 62.36; H, 5.13; N, 3.85.

Dimethyl 1-Benzoyl-1-ethoxycarbonyl-3H-benz[e]indoline-2,2dicarboxylate (9c).

This compound was obtained as pale yellow prisms (1.34 g , 58%), mp 160-161 ${ }^{\circ}$ (acetone-petroleum ether); ir (potassium bromide): v $3330(\mathrm{NH}), 1745,1670(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.06\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.10(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.06-7.76 \mathrm{ppm}(\mathrm{m}, 11 \mathrm{H}$, aromatic H); ms: m/z $461\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}$: C, 67.67 ; $\mathrm{H}, 5.02 ; \mathrm{N}, 3.04$. Found: C, 67.55; H, 4.83; N, 2.82.

Dimethyl 1-Methoxalyl-1-methyl-3H-benz[e]indoline-2,2-dicarboxylate (10b).

This compound was obtained as yellow prisms ($58 \mathrm{mg}, 3 \%$), $\mathrm{mp} 147-148^{\circ}$ (ethyl acetate-hexane); ir (potassium bromide): v $3345(\mathrm{NH}), 1739,1711(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.90(\mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{Me}), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.05-7.52(\mathrm{~m}$, 4 H , aromatic H$), 7.66-7.75 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $385\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}, 62.33 ; \mathrm{H}, 4.97 ; \mathrm{N}, 3.64$. Found: C, 62.16; H, 5.03; N, 3.89.

Dimethyl 1-Ethoxalyl-1-phenyl-3H-benz[e]indoline-2,2-dicarboxylate (10c).

This compound was obtained as orange prisms ($46 \mathrm{mg}, 2 \%$), $\mathrm{mp} 212-213^{\circ}$ (ethyl acetate-hexane); ir (potassium bromide): v $3360(\mathrm{NH}), 1750,1732,1721(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 0.69\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.99(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.67-3.96 (m, 2H, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.87-7.87 \mathrm{ppm}(\mathrm{m}, 11 \mathrm{H}$, aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $461\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 67.67 ; \mathrm{H}, 5.02 ; \mathrm{N}, 3.04$. Found: C, 67.48; H, 5.17; N, 3.05.

Trimethyl 3-Methoxalylindoline-2,2,3-tricarboxylate (11a).

This compound was obtained as yellow prisms ($1.31 \mathrm{~g}, 69 \%$), $\mathrm{mp} 129-130^{\circ}$ (methylene chloride-diethyl ether); ir (potassium bromide): v $3380(\mathrm{NH}), 1767,1750,1730(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCO}_{2} \mathrm{Me}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.72-7.36$ $\mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}$, aromatic H$)$; ms: m/z $379\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{9}$: C, $53.83 ; \mathrm{H}, 4.52 ; \mathrm{N}, 3.69$. Found: C, 53.75; H, 4.52; N, 3.40.

Trimethyl 3-Acetylindoline-2,2,3-tricarboxylate (11b).
This compound was obtained as colorless prisms (0.94 g , 56%), mp 148-149 ${ }^{\circ}$ (acetone); ir (potassium bromide): v 3345 $(\mathrm{NH}), 1742,1729,1714(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.79(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{xCO}_{2} \mathrm{Me}\right), 5.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.73(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 6.85$ (dd, $\mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}, 5$ or $6-\mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}, 5$ or $6-$ H), $7.35 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 335\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$: C, $57.31 ; \mathrm{H}, 5.11 ; \mathrm{N}, 4.18$. Found: C, 57.41; H, 5.15; N, 4.16.

Dimethyl 3-Benzoyl-3-ethoxycarbonylindoline-2,2-dicarboxylate (11c).
This compound was obtained as pale yellow prisms (1.21 g , 59%), mp 115-116 (acetone-diethyl ether); ir (potassium bromide): : $3345(\mathrm{NH}), 1752,1739,1663(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.22\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.23(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.64-6.83(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.05-7.65 \mathrm{ppm}(\mathrm{m}, 7 \mathrm{H}$, aromatic H$)$; ms: m/z 411 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{7}: \mathrm{C}, 64.23 ; \mathrm{H}, 5.15 ; \mathrm{N}, 3.41$. Found: C, 63.96; H, 5.10; N, 3.31.

Dimethyl 3-Methoxalyl-3-methylindoline-2,2-dicarboxylate (12b).

This compound was obtained as yellow prisms ($0.10 \mathrm{~g}, 6 \%$), $\mathrm{mp} 110-111^{\circ}$ (diethyl ether); ir (potassium bromide): v 3350 (NH), 1743, $1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 1.68 (s, 3H, 3-Me), 3.61 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.80 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 4.96 (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.68-7.25 ppm (m, 4H, aromatic H); ms: m/z $335\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$: C, $57.31 ; \mathrm{H}, 5.11 ; \mathrm{N}, 4.18$. Found: C, 57.25; H, 5.10; N, 4.29.
Dimethyl 3-Ethoxalyl-3-phenylindoline-2,2-dicarboxylate (12c).
This compound was obtained as orange oil ($62 \mathrm{mg}, 3 \%$); ir (neat): v $3370(\mathrm{NH}), 1740(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.12\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.07(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $4.10(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 5.04 (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 6.76-6.91(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.16-7.55 \mathrm{ppm}(\mathrm{m}, 7 \mathrm{H}$, aromatic H); high-resolution ms: Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{7} 411.1318$, found 411.1334.
Tetramethyl 3-(2-Naphthyl)-4-oxazoline-2,2,4,5-tetracarboxylate (13a).
This compound was obtained as colorless prisms (0.54 g , 25%), mp 154-156 (diethyl ether); ir (potassium bromide): v 1777, 1753, 1740, $1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.64$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.67 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}$), 3.87 (s , $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 7.33-7.52 (m, 3H, aromatic H), 7.70-7.79 ppm (m, 4 H , aromatic H); ms: m/z $429\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{9}$: C, $58.74 ; \mathrm{H}, 4.46 ; \mathrm{N}, 3.26$. Found: C, 58.82; H, 4.52; N, 3.49.
Trimethyl 5-Methyl-3-(2-naphthyl)-4-oxazoline-2,2,4-tricarboxylate (13b).
This compound was obtained as colorless prisms (0.29 g , 15%), mp 127-130 (diethyl ether-petroleum ether); ir (potassium bromide): v $1760,1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.44$ (s, $3 \mathrm{H}, 5-\mathrm{Me}$), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.59 ($\mathrm{s}, 6 \mathrm{H}$, $2 \mathrm{xCO}_{2} \mathrm{Me}$), 7.36-7.46 (m, 3H, aromatic H), 7.60-7.77 ppm (m, 4 H , aromatic H$)$; ms: m/z $385\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}$: C, 62.33; H, 4.97; N, 3.64. Found: C, 62.13; H, 5.03; N, 3.41.

Dimethyl 4-Ethoxycarbonyl-3-(2-naphthyl)-5-phenyl-4-oxazo-line-2,2-dicarboxylate (13c).
This compound was obtained as pale yellow prisms (0.37 g , 16%), mp 123-125 (diethyl ether-petroleum ether); ir (potassium bromide): v 1757, $1713(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 0.84\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.63(\mathrm{~s}, 6 \mathrm{H}$,
$\left.2 \mathrm{xCO}_{2} \mathrm{Me}\right), 4.00\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.36-8.13 \mathrm{ppm}$ $(\mathrm{m}, 12 \mathrm{H}$, aromatic H$) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 461\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 67.67 ; \mathrm{H}, 5.02 ; \mathrm{N}, 3.04$. Found: C, 67.75; H, 4.93; N, 3.03.

Tetramethyl 3-Phenyl-4-oxazoline-2,2,4,5-tetracarboxylate (14a).

This compound was obtained as colorless prisms $(0.32 \mathrm{~g}$, 17%), mp 95-97 ${ }^{\circ}$ (diethyl ether-petroleum ether); ir (potassium bromide): $v 1758,1744,1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.68$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.69 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 7.30 \mathrm{ppm}(\mathrm{s}, 5 \mathrm{H}$, aromatic H); ms: m/z $379\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{9}$: C, 53.83; H, 4.52; N, 3.69. Found: C, 53.80; H, 4.39; N, 3.77.
Trimethyl 5-Methyl-3-phenyl-4-oxazoline-2,2,4-tricarboxylate (14b).

This compound was obtained as colorless plates ($0.25 \mathrm{~g}, 15 \%$), $\mathrm{mp} 100^{\circ}$ (diethyl ether-petroleum ether); ir (potassium bromide): v 1770, 1746, $1706(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.41 (s, 3H, 5-Me), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.63\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{XCO}_{2} \mathrm{Me}\right)$, 7.06-7.26 ppm (m, 5 H , aromatic H); ms: m/z $335\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$: C, 57.31 ; $\mathrm{H}, 5.11$; N, 4.18. Found: C, 57.20; H, 5.16; N, 4.15.

Dimethyl 4-Ethoxycarbonyl-3,5-diphenyl-4-oxazoline-2,2-dicarboxylate (14c).

This compound was obtained as pale yellow prisms $(0.60 \mathrm{~g}$, 29%), mp 92-93 (diethyl ether-petroleum ether); ir (potassium bromide): v 1760, 1740, $1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 0.91\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.66(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCO}_{2} \mathrm{Me}$), $4.02\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.08-7.46(\mathrm{~m}$, 8 H , aromatic H), 7.94-8.05 ppm (m, 2 H , aromatic H); ms: m/z 411 (M^{+}).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{7}$: C, 64.23; H, 5.15; N, 3.41. Found: C, 63.99; H, 5.06; N, 3.13.

General Procedure for the Preparation of 15b,c from 6 and Methyl 2-Butynoate or Ethyl Phenylpropiolate.

A mixture of 6 ($1.19 \mathrm{~g}, 5 \mathrm{mmoles}$) and methyl 2-butynoate ($0.49 \mathrm{~g}, 5$ mmoles) or ethyl phenylpropiolate ($0.87 \mathrm{~g}, 5$ mmoles) in benzene (5 ml) was stirred at room temperature for 6 days. After removal of the solvent in vacuo, the residue was purified by silica gel chromatography using an ethyl acetate-hexane (1:4) as the eluent to afford 15b,c. The second fraction gave 14b (34 mg , $2 \%)$ and $\mathbf{1 4 c}(12 \mathrm{mg}, 3 \%)$. The third fraction gave $\mathbf{1 2 b}(0.10 \mathrm{~g}$, $6 \%)$ and 12c $(0.16 \mathrm{~g}, 8 \%)$. The last fraction gave $\mathbf{1 1 b}(0.18 \mathrm{~g}$, $11 \%)$ and $11 \mathrm{c}(0.21 \mathrm{~g}, 10 \%)$. The melting points and ir spectra of 11b,c, 12b and 14b,c coincided with those of authentic samples prepared from 6 and methyl 2-butynoate or ethyl phenylpropiolate. The ir spectrum of $\mathbf{1 2 c}$ coincided with that of authentic sample prepared from 6 and ethyl phenylpropiolate.
Trimethyl 2,3-Dihydro-5-methyl-2-phenylisoxazole-3,3,4-tricarboxylate (15b).

This compound was obtained as colorless needles $(1.09 \mathrm{~g}$, 65%), mp 116° (ethyl acetate-hexane); ir (potassium bromide): v 1753, $1694(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.41$ (s, $3 \mathrm{H}, 5-\mathrm{Me}), 3.61\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}\right), 3.73$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $7.08-$ $7.42 \mathrm{ppm}(\mathrm{m}, 5 \mathrm{H}$, aromatic H$)$; ms: m/z $335\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$: C, 57.31; H, 5.11; N, 4.18. Found: C, 57.40; H, 5.12; N, 4.40.

Dimethyl 4-Ethoxycarbonyl-2,3-dihydro-2,5-diphenylisoxazole-3,3-dicarboxylate (15c).
This compound was obtained as colorless needles $(1.21 \mathrm{~g}$, 59%), mp 90-91 ${ }^{\circ}$ (ethyl acetate-hexane); ir (potassium bromide): v 1757, 1742, $1726(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $1.15\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}\right)$, $4.16\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.08-7.52(\mathrm{~m}, 8 \mathrm{H}$, aromatic $\mathrm{H}), 7.83-7.94 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; ms: m/z $411\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{7}: \mathrm{C}, 64.23 ; \mathrm{H}, 5.15 ; \mathrm{N}, 3.41$. Found: C, 64.22; H, 5.23; N, 3.59.
The Preparation of $\mathbf{1 1 b}, \mathbf{c}$ and $\mathbf{1 4 b}, \mathbf{c}$ from $\mathbf{1 5 b}, \mathbf{c}$.
A mixture of $\mathbf{1 5 b}, \mathbf{c}(10 \mathrm{mmoles})$ in benzene (3 ml) was refluxed for 3 hours. After removal of the solvent in vacuo, the residue was purified by silica gel chromatography using an ethyl acetatehexane (1:4) as the eluent to yield $\mathbf{1 4 b}(0.37 \mathrm{~g}, 22 \%)$ and $\mathbf{1 4 c}(0.72$ $\mathrm{g}, 35 \%)$. Further the elution gave $\mathbf{1 1 b}(1.27 \mathrm{~g}, 76 \%)$ and $\mathbf{1 1 c}$ (1.29 $\mathrm{g}, 63 \%$), respectively. The melting points and ir spectra of $\mathbf{1 1 b}, \mathbf{c}$ and $\mathbf{1 4 b}, \mathbf{c}$ coincided with those of authentic samples prepared from 6 and methyl 2-butynoate or ethyl phenylpropiolate.
General Procedure for the Preparation of 16a,b from 7a and 11a.
A mixture of 7a or 11a (1 mmole) and triethylamine ($0.30 \mathrm{~g}, 3$ mmoles) in methanol (5 ml) was refluxed for 2 hours. After removal of the solvent in vacuo, cold water was added to the residue. The resulting mixture was extracted with chloroform. The extract was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was recrystallized from an appropriate solvent to give 16a,b.
Trimethyl 1 H -Benz[g]indoline-2,2,3-tricarboxylate (16a).
This compound was obtained as colorless prisms $(0.31 \mathrm{~g}$, 90%), mp 127-128 (acetone-diethyl ether); ir (potassium bromide): v $3400(\mathrm{NH}), 1755,1740(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.69$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.79 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.82 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $5.18(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 5.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.33-7.52$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic H), $7.73-7.84 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H); ms: $\mathrm{m} / \mathrm{z} 343\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 62.97; H, 4.99; N, 4.08. Found: C, 63.15; H, 5.10; N, 4.15.
Trimethyl Indoline-2,2,3-tricarboxylate (16b).
This compound was obtained as colorless prisms $(0.29 \mathrm{~g}$, 99%), mp 70-72 (diethyl ether-petroleum ether); ir (potassium bromide): $\mathrm{V} 3420(\mathrm{NH}), 1738(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (deuteriochloroform): $\delta 3.63$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.77 (s , $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 4.77 (br s, $1 \mathrm{H}, \mathrm{NH}$), $4.96(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.68-7.16$ ppm (m, 4H, aromatic H); ms: m/z $293\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, $57.34 ; \mathrm{H}, 5.16 ; \mathrm{N}, 4.78$. Found: C, 57.44; H, 5.21; N, 4.83.
General Procedure for the Preparation of cis- and trans-17a,b from 16a,b.

Dry hydrogen chloride was bubbled into an ice-cooled and stirred solution of 16a,b (6 mmoles) in anhydrous methanol (40 $\mathrm{ml})$ for one hour, and then the mixture was refluxed for 8 hours. After removal of the solvent in vacuo, the residue was basified with saturated sodium bicarbonate. The resulting mixture was extracted with chloroform. The extract was dried over anhydrous
sodium sulfate and concentrated in vacuo. The residue was purified by silica gel chromatography using a 10% ethyl acetate in hexane as the eluent to yield cis-17a,b. Further the elution afforded trans-17a,b.
Dimethyl cis-1H-Benz[g]indoline-2,3-dicarboxylate (cis-17a).
This compound was obtained as colorless needles $(0.19 \mathrm{~g}$, 11%), mp 94-95 (diethyl ether); ir (potassium bromide): v 3370 (NH), 1752, 1735 ($\mathrm{C}=\mathrm{O}$) cm ${ }^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $3.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCO}_{2} \mathrm{Me}\right), 4.71(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.98$ (br s, $1 \mathrm{H}, \mathrm{NH}), 5.15(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.27-7.50(\mathrm{~m}, 4 \mathrm{H}$, aromatic $\mathrm{H})$, 7.72-7.86 ppm (m, 2 H , aromatic H); ms: m/z $285\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 67.36; H, 5.30; N, 4.91. Found: C, 67.65; H, 5.30; N, 5.18.
Dimethyl trans-1H-Benz[g]indoline-2,3-dicarboxylate (trans17a).

This compound was obtained as colorless needles $(0.85 \mathrm{~g}$, 50%), mp 118-120 (diethyl ether); ir (potassium bromide): v $3360(\mathrm{NH}), 1738(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 3.67 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.92 (br s, $1 \mathrm{H}, \mathrm{NH}$), $4.58(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.33-$ $7.47(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.69-7.83 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} 285\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 67.36 ; \mathrm{H}, 5.30 ; \mathrm{N}, 4.91$. Found: C, 67.38; H, 5.39; N, 4.97.

Dimethyl cis-Indoline-2,3-dicarboxylate (cis-17b).

This compound was obtained as colorless prisms $(0.18 \mathrm{~g}$, 13%), mp 74-77 (diethyl ether-petroleum ether); ir (potassium bromide): v $3410(\mathrm{NH}), 1730,1713(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}): $\delta 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.37$ (d, J = 6.5 Hz, 1H, 3-H), 4.73 (dd, J = 2.5, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 6.32 $(\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.55-6.70(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 6.98-$ $7.19 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; ms: m/z $235\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 61.27 ; \mathrm{H}, 5.57 ; \mathrm{N}, 5.95$. Found: C, 61.12; H, 5.60; N, 5.89.

Dimethyl trans-Indoline-2,3-dicarboxylate (trans-17b).

This compound was obtained as colorless prisms (0.41 g , 29%), mp 72-74 (diethyl ether); ir (potassium bromide): v 3370 (NH), $1735(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): ~ \delta 3.60(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.50(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.72$ (dd, J = $2.5,10 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.52-$ $6.67(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 6.95-7.10 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$, aromatic H$)$; ms : m/z $235\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 61.27 ; \mathrm{H}, 5.57 ; \mathrm{N}, 5.95$. Found: C, 60.90; H, 5.62; N, 5.86.

General Procedure for the Preparation of $\mathbf{1 8 a}, \mathbf{b}$ from cis- or trans-17a,b.

A mixture of cis- or trans-17a,b (1 mmole) and 2,3-dichloro5,6 -dicyano-1,4-benzoquinone ($0.23 \mathrm{~g}, 1 \mathrm{mmole}$) in 1,4-dioxane $(2 \mathrm{ml})$ was refluxed for one hour. After removal of the deposited crystals by filtration, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel with chloroform as the eluent to give dimethyl 1 H -benz $[g]$ indole-2,3-dicarboxylate (18a) [($0.24 \mathrm{~g}, 85 \%$, from cis-17a), (0.23 g , 81%, from trans-17a)] and dimethyl indole-2,3-dicarboxylate (18b) $[(0.18 \mathrm{~g}, 77 \%$, from cis-17b), $(0.20 \mathrm{~g}, 85 \%$, from trans$\mathbf{1 7 b})]$. The melting points and ir spectra of $\mathbf{1 8} \mathbf{a}, \mathbf{b}$ coincided with
those of authentic samples prepared from dimethyl 1-(1-naph-thyl)-1,2,3-triazole-4,5-dicarboxylate [23] or prepared from 1,2diphenylhydrazine and dimethyl acetylenedicarboxylate [24].

REFERENCES AND NOTES

[1] C. W. Holzapfel and R. Crous, Heterocycles, 48, 1337 (1998).
[2] T. Kiguchi, M. Shirakawa, I. Ninomiya and T. Naito, Chem. Pharm. Bull., 44, 1282 (1996).
[3] J. Hamer and A. Macaluso, Chem. Rev., 64, 473 (1964).
[4] G. R. Delpierre and M. Lamchen, Quart. Rev., 19, 329 (1965).
[5] E. Breuer, The Chemistry of Functional Group, supplement F, part 1, S. Patai, ed, John Wiley and Sons, Inc., New York, 1982, p 459.
[6] D. S. Black, R. F. Crozier and V. C. Davis, Synthesis, 205 (1975).
[7] J. J. Tufariello, 1,3-Dipolar Cycloaddition Chemistry, Vol 2, A. Padwa, ed, John Wiley and Sons, Inc., New York, 1984, p 83.
[8] K. B. G. Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH, Inc., New York, 1988.
[9] O. Tamura, N. Mita, K. Gotanda, K. Yamada, T. Nakano, R. Katagiri and M. Sakamoto, Heterocycles, 46, 95 (1997).
[10] U. Chiacchio, F. Casuscelli, A. Corsaro, A. Rescifina, G. Romeo and N. Uccella, Tetrahedron, 50, 6671 (1994).
[11] Y. Takeuchi, Advances in Heterocyclic Chemistry, Vol 21, A. R. Katritzky and A. J. Boulton, eds, Academic Press, Inc., New

York, 1977, p 207.
[12] J. P. Freeman, Chem. Rev., 83, 241 (1983).
[13] M. Hayashi, Y. Kim, S. Takamatsu, A. Enomoto, M. Shinose, Y. Takahashi, H. Tanaka, K. Komiyama and S. Omura, J. Antibiot., 49, 1091 (1996).
[14] H. Matsuoka, N. Kato, N. Ohi, K. Miyamoto, M. Mihara and Y. Takeda, Chem. Pharm. Bull., 45, 1146 (1997).
[15] S. Kamiya, H. Shirahase, A. Yoshimi, S. Nakamura, M. Kanda, H. Matsui, M. Kasai, K. Takahashi and K. Kurahashi, Chem. Pharm. Bull., 48, 817 (2000).
[16] S. Kamiya, H. Shirahase, S. Nakamura, M. Kanda, H. Matsui, A. Yoshimi, M. Kasai, K. Takahashi and K. Kurahashi, Chem. Pharm. Bull., 49, 563 (2001).
[17] H. B. Rasmussen and J. K. MacLeod, J. Nat. Prod., 60, 1152 (1997).
[18] D. A. Venables, L. R. Barrows, P. Lassota and C. M. Ireland, Tetrahedron Letters, 38, 721 (1997).
[19] Y. Fukuyama, C. Iwatsuki and M. Kodama, Tetrahedron, 54, 10007 (1998).
[20] H. Suzuki, C. Iwata, K. Sakurai, K. Tokumoto, H. Takahashi, M. Hanada, Y. Yokoyama and Y. Murakami, Tetrahedron, 53, 1593 (1997).
[21] S. Miah, C. J. Moody, I. C, Richards and A. M. Slawin, J. Chem. Soc., Perkin Trans. 1, 2405 (1997).
[22] E. Brill, Experientia, 30, 835 (1974).
[23] G. Mitchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 413 (1987).
[24] O. Diels and J. Reese, Justus Liebigs Ann. Chem., 511, 168 (1934).

